The diagram below shows the position-time graph for a mass that is oscil- lating vertically on the end of a spring. The mass is shown superimposed on the graph at three different instants during a single cycle. Check page one of the lab for a similar graph that might be helpful. a. Draw the forces acting on the mass at each of those positions. Make sure the length of the force vectors give the relative magnitude of the forces at those positions. b. Draw the velocity vectors next to each block to show the direction and relative magnitude of the velocity at each position. C. Draw the acceleration vectors next to each block to show the direction and relative magnitude of the accel- eration at each position. A +X TIME-> What is the direction of the net force at position 1? What direc- tion is the acceleration? Give an explanation by comparing the size of the spring force and weight at position 1. d. 0 -X- -A Figure 10-9

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Topic Video
Question
The diagram below shows the position-time graph for a mass that is oscil-
lating vertically on the end of a spring. The mass is shown superimposed on
the graph at three different instants during a single cycle. Check page one of
the lab for a similar graph that might be helpful.
a.
Draw the forces acting on the mass at each of those positions. Make
sure the length of the force vectors give the relative magnitude of the
forces at those positions.
b.
Draw the velocity vectors next to each block to show the direction and
relative magnitude of the velocity at each position.
C.
Draw the acceleration vectors next
to each block to show the direction
and relative magnitude of the accel-
eration at each position.
A
2
TIME-
What is the direction of the net
force at position 1? What direc-
tion is the acceleration? Give an
explanation by comparing the size
of the spring force and weight at
position 1.
d.
+X
0
-X
-A
Figure 10-9
1
Transcribed Image Text:The diagram below shows the position-time graph for a mass that is oscil- lating vertically on the end of a spring. The mass is shown superimposed on the graph at three different instants during a single cycle. Check page one of the lab for a similar graph that might be helpful. a. Draw the forces acting on the mass at each of those positions. Make sure the length of the force vectors give the relative magnitude of the forces at those positions. b. Draw the velocity vectors next to each block to show the direction and relative magnitude of the velocity at each position. C. Draw the acceleration vectors next to each block to show the direction and relative magnitude of the accel- eration at each position. A 2 TIME- What is the direction of the net force at position 1? What direc- tion is the acceleration? Give an explanation by comparing the size of the spring force and weight at position 1. d. +X 0 -X -A Figure 10-9 1
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Simple Harmonic Motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON