When photons pass through matter, the intensity I of the beam (measured in watts per square meter) decreases exponentially according to                                            I = I0e-μxwhere I is the intensity of the beam that just passed through a thickness x of material and I0 is the intensity of the incident beam. The constant μ is known as the linear absorption coefficient, and its value depends on the absorbing material and the wavelength of the photon beam. This wavelength (or energy) dependence allows us to filter out unwanted wavelengths from a broad-spectrum x-ray beam.(a) Two x-ray beams of wavelengths λ1 and λ2 and equal incident intensities pass through the same metal plate. Show that the ratio of the emergent beam intensities is                                          (I2)/(I1) = e-(μ2 - μ1)x(b) Compute the ratio of intensities emerging from an aluminum plate 1.00 mm thick if the incident beam contains equal intensities of 50 pm and 100 pm x-rays. The values of μ for aluminum at these two wavelengths are μ1 = 5.40 cm-1 at 50 pm and μ2 = 41.0 cm-1 at 100 pm. (c) Repeat part (b)for an aluminum plate 10.0 mm thick.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question

When photons pass through matter, the intensity I of the beam (measured in watts per square meter) decreases exponentially according to
                                            I = I0e-μx
where I is the intensity of the beam that just passed through a thickness x of material and I0 is the intensity of the incident beam. The constant μ is known as the linear absorption coefficient, and its value depends on the absorbing material and the wavelength of the photon beam. This wavelength (or energy) dependence allows us to filter out unwanted wavelengths from a broad-spectrum x-ray beam.
(a) Two x-ray beams of wavelengths λ1 and λ2 and equal incident intensities pass through the same metal plate. Show that the ratio of the emergent beam intensities is
                                          (I2)/(I1) = e-(μ2 - μ1)x
(b) Compute the ratio of intensities emerging from an aluminum plate 1.00 mm thick if the incident beam contains equal intensities of 50 pm and 100 pm x-rays. The values of μ for aluminum at these two wavelengths are μ1 = 5.40 cm-1 at 50 pm and μ2 = 41.0 cm-1 at 100 pm. (c) Repeat part (b)
for an aluminum plate 10.0 mm thick.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 5 images

Blurred answer
Knowledge Booster
Atomic spectra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON