1. (30 pts) The soil profile shown below consists of 10 meters of sandy silt overlying gravel. The pore water pressure at the top surface of the silty sand is zero and can be assumed to remain zero. a) Calculate the level to which water would rise in a piezometer tube inserted into the top of the gravel if the silty sand is just stable? Use submerged unit weights and seepage forces to arrive at your answer (do not calculate total stresses and pore water pressures). Express your answer as an elevation, e.g. "Elev. 130". (Note: Elevations are in meters) (10 pts) b) Using the piezometric elevation calculated in part (a), calculate the pore water pressure at the bottom of the silty sand if the silty sand is just stable (10 pts). c) Calculate the total stress at the base of the silty sand and show that it is equal to the pore water pressure calculated in part (b) (10 pts) Elev. 120 m. Elev. 110 m. Sandy Silt (saturated) Void ratio, e = 0.68 G = 2.65 Gravel

Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Braja M. Das, Nagaratnam Sivakugan
Chapter2: Geotechnical Properties Of Soil
Section: Chapter Questions
Problem 2.13P
icon
Related questions
Question
1. (30 pts) The soil profile shown below consists of 10 meters of sandy silt overlying gravel.
The pore water pressure at the top surface of the silty sand is zero and can be assumed to
remain zero.
a) Calculate the level to which water would rise in a piezometer tube inserted into the top
of the gravel if the silty sand is just stable? Use submerged unit weights and seepage forces
to arrive at your answer (do not calculate total stresses and pore water pressures). Express
your answer as an elevation, e.g. "Elev. 130". (Note: Elevations are in meters) (10 pts)
b) Using the piezometric elevation calculated in part (a), calculate the pore water pressure
at the bottom of the silty sand if the silty sand is just stable (10 pts).
c) Calculate the total stress at the base of the silty sand and show that it is equal to the pore
water pressure calculated in part (b) (10 pts)
Elev. 120 m.
Elev. 110 m.
Sandy Silt (saturated)
Void ratio, e = 0.68
G = 2.65
Gravel
Transcribed Image Text:1. (30 pts) The soil profile shown below consists of 10 meters of sandy silt overlying gravel. The pore water pressure at the top surface of the silty sand is zero and can be assumed to remain zero. a) Calculate the level to which water would rise in a piezometer tube inserted into the top of the gravel if the silty sand is just stable? Use submerged unit weights and seepage forces to arrive at your answer (do not calculate total stresses and pore water pressures). Express your answer as an elevation, e.g. "Elev. 130". (Note: Elevations are in meters) (10 pts) b) Using the piezometric elevation calculated in part (a), calculate the pore water pressure at the bottom of the silty sand if the silty sand is just stable (10 pts). c) Calculate the total stress at the base of the silty sand and show that it is equal to the pore water pressure calculated in part (b) (10 pts) Elev. 120 m. Elev. 110 m. Sandy Silt (saturated) Void ratio, e = 0.68 G = 2.65 Gravel
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Principles of Geotechnical Engineering (MindTap C…
Principles of Geotechnical Engineering (MindTap C…
Civil Engineering
ISBN:
9781305970939
Author:
Braja M. Das, Khaled Sobhan
Publisher:
Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap…
Fundamentals of Geotechnical Engineering (MindTap…
Civil Engineering
ISBN:
9781305635180
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning