A geothermal heat pump running a simple heat pump cycle uses R-134a as the refrigerant and sources thermal energy from well water. The well water enters the evaporator at 13°C and exits at 7°C, with negligible pressure drop. On the refrigerant side, the evaporator operates isobarically at 320 kPa and the refrigerant exits the evaporator at 10°C. The refrigerant is compressed to 1200 kPa through the compressor, which has an isentropic efficiency of 90%. In the condenser, air absorbs energy from the refrigerant at a rate of 4.5 tons (1 ton = 211 kJ/min) as its temperature increases from 22°C at the condenser inlet to 42°C at the condenser outlet. The condenser operates isobarically, and the refrigerant exits the condenser at 20°C. Calculate the input power to the compressor and the COP of the heat pump.

Refrigeration and Air Conditioning Technology (MindTap Course List)
8th Edition
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Chapter45: Domestic Refrigerators And Freezers
Section: Chapter Questions
Problem 2RQ: The operating condition for the single compressor in a household refrigerator is the lowest box...
icon
Related questions
Question
A geothermal heat pump running a simple heat pump cycle uses R-134a as the refrigerant and sources
thermal energy from well water. The well water enters the evaporator at 13°C and exits at 7°C, with
negligible pressure drop. On the refrigerant side, the evaporator operates isobarically at 320 kPa and the
refrigerant exits the evaporator at 10°C. The refrigerant is compressed to 1200 kPa through the
compressor, which has an isentropic efficiency of 90%. In the condenser, air absorbs energy from the
refrigerant at a rate of 4.5 tons (1 ton = 211 kJ/min) as its temperature increases from 22°C at the
condenser inlet to 42°C at the condenser outlet. The condenser operates isobarically, and the refrigerant
exits the condenser at 20°C.
Calculate the input power to the compressor and the COP of the heat pump.
Transcribed Image Text:A geothermal heat pump running a simple heat pump cycle uses R-134a as the refrigerant and sources thermal energy from well water. The well water enters the evaporator at 13°C and exits at 7°C, with negligible pressure drop. On the refrigerant side, the evaporator operates isobarically at 320 kPa and the refrigerant exits the evaporator at 10°C. The refrigerant is compressed to 1200 kPa through the compressor, which has an isentropic efficiency of 90%. In the condenser, air absorbs energy from the refrigerant at a rate of 4.5 tons (1 ton = 211 kJ/min) as its temperature increases from 22°C at the condenser inlet to 42°C at the condenser outlet. The condenser operates isobarically, and the refrigerant exits the condenser at 20°C. Calculate the input power to the compressor and the COP of the heat pump.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning