Consider the following ODE in time (from Homework 6). Integrate in time using 4th order Runge-Kutta method. Compare this solution with the finite difference and analytical solutions from Homework 6. 4 25 u(0)=0 (a) Use At = 0.2 up to a final time t = 1.0. (b) Use At=0.1 up to a final time t = 1.0. 0 (0)=2 (c) Discuss the difference in the two solutions of parts (a) and (b). Why are they so different?

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Consider the following ODE in time (from Homework 6). Integrate in time using 4th order Runge-Kutta
method. Compare this solution with the finite difference and analytical solutions from Homework 6.
4 25
u(0)=0
(a) Use At = 0.2 up to a final time t = 1.0.
(b) Use At=0.1 up to a final time t = 1.0.
0
(0)=2
(c) Discuss the difference in the two solutions of parts (a) and (b). Why are they so different?
Transcribed Image Text:Consider the following ODE in time (from Homework 6). Integrate in time using 4th order Runge-Kutta method. Compare this solution with the finite difference and analytical solutions from Homework 6. 4 25 u(0)=0 (a) Use At = 0.2 up to a final time t = 1.0. (b) Use At=0.1 up to a final time t = 1.0. 0 (0)=2 (c) Discuss the difference in the two solutions of parts (a) and (b). Why are they so different?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY