Often there are cheaper, less accurate tests for diagnosing the presence of some conditions in a person, along with more expensive, accurate tests. Suppose we have two cheap tests and one expensive test, with the following characteristics. All three tests are positive if a person has the condition (there are no "false negatives"), but the cheap tests give "false positives". Let a person be chosen at random, and let D = {person has the condition}. The three tests are Test 1: Test 2: Test 3: P (positive test D) = .05; test costs $5.00 P (positive test D) = .03; test costs $8.00 P (positive test |D) = 0; test costs $40.00 We want to check a large number of people for the condition, and have to choose among three testing strategies: (i) Use Test 1, followed by Test 3 if Test 1 is positive. (ii) Use Test 2, followed by Test 3 if Test 2 is positive. (iii) Use Test 3. Determine the expected cost per person under each of strategies (i), (ii) and (iii). We will then choose the strategy with the lowest expected cost. It is known that about .001 of the population have the condition (i.e. P(D) = .001, P(D) = .999).

Holt Mcdougal Larson Pre-algebra: Student Edition 2012
1st Edition
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Chapter11: Data Analysis And Probability
Section: Chapter Questions
Problem 8CR
icon
Related questions
Question
Often there are cheaper, less accurate tests for diagnosing the presence of some conditions in a person,
along with more expensive, accurate tests. Suppose we have two cheap tests and one expensive test,
with the following characteristics. All three tests are positive if a person has the condition (there are no
"false negatives"), but the cheap tests give "false positives".
Let a person be chosen at random, and let D = {person has the condition}. The three tests are
Test 1:
Test 2:
Test 3:
P (positive test D) = .05; test costs $5.00
P (positive test |D) = .03; test costs $8.00
P (positive test |D) = 0; test costs $40.00
We want to check a large number of people for the condition, and have to choose among three testing
strategies:
(i) Use Test 1, followed by Test 3 if Test 1 is positive.
(ii) Use Test 2, followed by Test 3 if Test 2 is positive.
(iii) Use Test 3.
Determine the expected cost per person under each of strategies (i), (ii) and (iii). We will then choose
the strategy with the lowest expected cost. It is known that about .001 of the population have the
condition (i.e. P(D) = .001, P(D) = .999).
Transcribed Image Text:Often there are cheaper, less accurate tests for diagnosing the presence of some conditions in a person, along with more expensive, accurate tests. Suppose we have two cheap tests and one expensive test, with the following characteristics. All three tests are positive if a person has the condition (there are no "false negatives"), but the cheap tests give "false positives". Let a person be chosen at random, and let D = {person has the condition}. The three tests are Test 1: Test 2: Test 3: P (positive test D) = .05; test costs $5.00 P (positive test |D) = .03; test costs $8.00 P (positive test |D) = 0; test costs $40.00 We want to check a large number of people for the condition, and have to choose among three testing strategies: (i) Use Test 1, followed by Test 3 if Test 1 is positive. (ii) Use Test 2, followed by Test 3 if Test 2 is positive. (iii) Use Test 3. Determine the expected cost per person under each of strategies (i), (ii) and (iii). We will then choose the strategy with the lowest expected cost. It is known that about .001 of the population have the condition (i.e. P(D) = .001, P(D) = .999).
Expert Solution
steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Recommended textbooks for you
Holt Mcdougal Larson Pre-algebra: Student Edition…
Holt Mcdougal Larson Pre-algebra: Student Edition…
Algebra
ISBN:
9780547587776
Author:
HOLT MCDOUGAL
Publisher:
HOLT MCDOUGAL
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Calculus For The Life Sciences
Calculus For The Life Sciences
Calculus
ISBN:
9780321964038
Author:
GREENWELL, Raymond N., RITCHEY, Nathan P., Lial, Margaret L.
Publisher:
Pearson Addison Wesley,
Glencoe Algebra 1, Student Edition, 9780079039897…
Glencoe Algebra 1, Student Edition, 9780079039897…
Algebra
ISBN:
9780079039897
Author:
Carter
Publisher:
McGraw Hill
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Algebra
ISBN:
9781680331141
Author:
HOUGHTON MIFFLIN HARCOURT
Publisher:
Houghton Mifflin Harcourt