A playground is on the flat roof of a city school, hb = 6.60 m above the street below (see figure). The vertical wall of the building is h = 7.80 m high, to form a 1.2-m-high railing around the playground. A ball has fallen to the street below, and a passerby returns it by launching it at an angle of ? = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall. A man on the ground kicking a ball to children on a flat rooftop is shown. The distance between the man and the building is labeled d. The height of the left wall of the building is labeled h. The motion of the ball is depicted as a parabola originating from the man on the ground and ending at the rooftop. The vector of the initial motion of the ball makes an angle ? with the horizontal. (a) Find the speed at which the ball was launched. m/s (b) Find the vertical distance by which the ball clears the wall.

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter3: Vectors
Section: Chapter Questions
Problem 42PQ: The same vectors that are shown in Figure P3.6 are shown in Figure P3.42. The magnitudes are F1 =...
icon
Related questions
icon
Concept explainers
Topic Video
Question
100%

-A playground is on the flat roof of a city school, hb = 6.60 m above the street below (see figure). The vertical wall of the building is h = 7.80 m high, to form a 1.2-m-high railing around the playground. A ball has fallen to the street below, and a passerby returns it by launching it at an angle of ? = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall.

A man on the ground kicking a ball to children on a flat rooftop is shown. The distance between the man and the building is labeled d. The height of the left wall of the building is labeled h. The motion of the ball is depicted as a parabola originating from the man on the ground and ending at the rooftop. The vector of the initial motion of the ball makes an angle ? with the horizontal.
(a) Find the speed at which the ball was launched.
m/s

(b) Find the vertical distance by which the ball clears the wall.
m

(c) Find the horizontal distance from the wall to the point on the roof where the ball lands.
m
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

A playground is on the flat roof of a city school, hb = 6.60 m above the street below (see figure). The vertical wall of the building is h = 7.80 m high, to form a 1.2-m-high railing around the playground. A ball has fallen to the street below, and a passerby returns it by launching it at an angle of ? = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall.

A man on the ground kicking a ball to children on a flat rooftop is shown. The distance between the man and the building is labeled d. The height of the left wall of the building is labeled h. The motion of the ball is depicted as a parabola originating from the man on the ground and ending at the rooftop. The vector of the initial motion of the ball makes an angle ? with the horizontal.
Solution
Bartleby Expert
SEE SOLUTION
Knowledge Booster
Projectile motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning