Consider the truss made of 2 bars with lengths 1 m, orientated in the structure shown in Figure 1. The two bars have the same cross-sectional areas A = 5·10-4 m² and modulus of elasticity E = 2·10¹¹ N/m². 10 kN is applied in the x-direction at node 1. A force of F1,x = 850 P 2 = 90° 2 AE L 1 1m 3 1m F1,x = 10KN Figure 1: Truss assembly formed of two bars. Nodes and bars are numbered, with bars numbered with underlines. X a) Using the numbering system of nodes and bars shown in Figure 1, state the 2 local stiffness matrices for each bar and combine these into a global stiffness system for all nodal displacements of the truss. Use the matrix system given in Eq. 1 below relating the local displacements of a single bar to the local forces applied to its nodes. fix fiy fjx fjy Here C = cos(0) and S = sin(0), where is the angle of orientation of the bar. CS -C² -CS C² CS S² -CS -S² -C² -CS C² -CS -S² CS CS S² R Wi Vi U j (1) What is the force required on node 1 for the displacement of the node 1 to be u₁ = 1.10-4 m and V₁ = 0m. V1

Mechanics of Materials (MindTap Course List)
9th Edition
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Barry J. Goodno, James M. Gere
Chapter2: Axially Loaded Members
Section: Chapter Questions
Problem 2.7.8P: The statically indeterminate structure shown in the figure consists of a horizontal rigid bar AB...
icon
Related questions
Question

can you help answer this question please? thank you. 

Consider the truss made of 2 bars with lengths 1 m, orientated in the structure shown in Figure 1. The
two bars have the same cross-sectional areas A = 5·10-4 m² and modulus of elasticity E = 2·10¹¹ N/m².
10 kN is applied in the x-direction at node 1.
A force of F1,x
=
850
P
2
=
90°
2
AE
L
1
1m
3
1m
F1,x = 10KN
Figure 1: Truss assembly formed of two bars. Nodes and bars are numbered, with bars numbered
with underlines.
X
a) Using the numbering system of nodes and bars shown in Figure 1, state the 2 local stiffness matrices
for each bar and combine these into a global stiffness system for all nodal displacements of the
truss. Use the matrix system given in Eq. 1 below relating the local displacements of a single bar
to the local forces applied to its nodes.
fix
fiy
fjx
fjy
Here C = cos(0) and S = sin(0), where is the angle of orientation of the bar.
CS -C² -CS
C²
CS S² -CS -S²
-C² -CS C²
-CS -S² CS
CS
S²
R
Wi
Vi
U j
(1)
Transcribed Image Text:Consider the truss made of 2 bars with lengths 1 m, orientated in the structure shown in Figure 1. The two bars have the same cross-sectional areas A = 5·10-4 m² and modulus of elasticity E = 2·10¹¹ N/m². 10 kN is applied in the x-direction at node 1. A force of F1,x = 850 P 2 = 90° 2 AE L 1 1m 3 1m F1,x = 10KN Figure 1: Truss assembly formed of two bars. Nodes and bars are numbered, with bars numbered with underlines. X a) Using the numbering system of nodes and bars shown in Figure 1, state the 2 local stiffness matrices for each bar and combine these into a global stiffness system for all nodal displacements of the truss. Use the matrix system given in Eq. 1 below relating the local displacements of a single bar to the local forces applied to its nodes. fix fiy fjx fjy Here C = cos(0) and S = sin(0), where is the angle of orientation of the bar. CS -C² -CS C² CS S² -CS -S² -C² -CS C² -CS -S² CS CS S² R Wi Vi U j (1)
What is the force required on node 1 for the displacement of the node 1 to be u₁ = 1.10-4 m and
V₁ = 0m.
V1
Transcribed Image Text:What is the force required on node 1 for the displacement of the node 1 to be u₁ = 1.10-4 m and V₁ = 0m. V1
AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
steps

Unlock instant AI solutions

Tap the button
to generate a solution

Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning