Tutorials in Introductory Physics
Tutorials in Introductory Physics
1st Edition
ISBN: 9780130970695
Author: Peter S. Shaffer, Lillian C. McDermott
Publisher: Addison Wesley
bartleby

Videos

Textbook Question
Book Icon
Chapter 10.5, Problem 1bT

Consider a point on the distant object that is also on the principal axis of the lens.

Chapter 10.5, Problem 1bT, Consider a point on the distant object that is also on the principal axis of the lens. On the
On the diagram below, sketch several rays from this distant point that reach the lens.

How are these rays oriented with respect to one another and to the principal axis? Explain.

On the basis of your observations from part A, show the continuation of each of these rays through the lens and out the other side. On the diagram, indicate where the rays converge.

Note: Refraction takes place at the two surfaces of the lens. However, in drawing a ray diagram for a thin lens, it is customary to draw rays as if all refraction takes place at the center of the lens.

Blurred answer
Students have asked these similar questions
Consider a ray diagram below that depicts familiar 4 principal rays that allow us to find the image of an object as shown. However, there are many other rays that will leave the tip of the object. Consider, for example, ray No. 5 that gets reflected from a mirror at point A. Where will the reflected ray No. 5 go? The reflected ray will pass through the tip of the image.   The reflected ray will pass through the center of curvature.   The reflected ray will pass through the focal point F.   It's impossible to predict where the reflected ray will go.
An object and screen are located as shown below, and a converging lens is placed between them. The lens produces a sharp image of the object on the screen.   On the diagram, draw two principal rays from the top of the object (i.e. tip of the pencil) to the screen that will allow you to locate both focal points of the lens, and label these points on the diagram. Explain the reasoning used to determine the answer. On the diagram of the previous question, it is known that the distance between the lens and the object is twice the distance between the lens and the screen.  It is also found that by moving the object closer to the lens by 12 cm, the lens produces a lateral magnification of –1 (of course the screen is also moved in the process).  Compute the focal length of the lens in cm. Please show work
Part A The diagram below shows the situation described in the problem. The focal length of the lens is labeled f; the scale on the optical axis is in centimeters.Draw the three special rays Ray1, Ray2, and Ray3 as described in the Tactics Box above, and label each ray accordingly. Draw the rays from the tip of the object to the lens. Do not draw the refracted rays. Draw the vectors starting from the tip of the object. The location and orientation of the vectors will be graded. The length of the vectors will not be graded. +, Vectors: Ray3 Ray through center of lens Ray2 Ray toward far focal point Rayl Ray parallel to axis Unlabeled vector Object 1

Chapter 10 Solutions

Tutorials in Introductory Physics

Ch. 10.1 - Prob. 2cTCh. 10.1 - Predict what you would see on the screen at the...Ch. 10.1 - Suppose that the light from the top bulb in the...Ch. 10.1 - Predict what you would see on the screen in the...Ch. 10.2 - Close one eye and lean down so that your open eye...Ch. 10.2 - Suppose that you placed your finger behind the...Ch. 10.2 - Prob. 1cTCh. 10.2 - Prob. 1dTCh. 10.2 - Place your head so that you can see the image of...Ch. 10.2 - Move the nail off w the right side of the mirror...Ch. 10.2 - Prob. 3aTCh. 10.2 - Turn the large sheet of paper over (or obtain a...Ch. 10.2 - Remove the mirror and the object nail. For each...Ch. 10.2 - On the diagram at right, draw one ray from the pin...Ch. 10.2 - Prob. 4bTCh. 10.2 - Determine the image location using the method of...Ch. 10.3 - A pin is placed In front of a cylindrical mirror...Ch. 10.3 - Could you use any two rays (even those that do not...Ch. 10.3 - Observers at M and N arc looking at an image of...Ch. 10.3 - Stick a pin into a piece of cardboard and place...Ch. 10.3 - Gradually decrease the angle between the mirrors...Ch. 10.4 - Prob. 1bTCh. 10.4 - Three students are discussing their results from...Ch. 10.4 - For each case shown below, determine and label the...Ch. 10.4 - In each of the previous cases, predict what would...Ch. 10.4 - Prob. 2cTCh. 10.4 - Explain how you can use a screen to determine the...Ch. 10.5 - Look at very distant object through a convex lens....Ch. 10.5 - Consider a point on the distant object that is...Ch. 10.5 - Suppose that you placed a very small bulb at the...Ch. 10.5 - Consider the ray chai is parallel to the principal...Ch. 10.5 - Consider the ray that goes through the focal point...Ch. 10.5 - How can you use these two rays to determine the...Ch. 10.5 - Consider the ray from the easer that strikes the...Ch. 10.5 - Draw the continuation of the two remaining rays...Ch. 10.5 - Prob. 2fTCh. 10.5 - The diagram below shows a small object placed near...Ch. 10.5 - A lens, a bulb, and a screen are arranged as shown...Ch. 10.5 - Obtain the necessary equipment and check your...Ch. 10.5 - Prob. 3cTCh. 10.6 - The diagram at right illustrates what an observer...Ch. 10.6 - Obtain two soda cans and a cardboard tube that has...Ch. 10.6 - Could an observer at each of the labeled points...Ch. 10.6 - Use the above diagram to answer the following...Ch. 10.6 - Obtain convex lens. Use the lens as a magnifying...Ch. 10.6 - Draw a ray diagram that shows how to determine the...Ch. 10.6 - The lateral magnification, m1 , is defined as...Ch. 10.6 - The angular magnification, m , is defined as m= ,...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Domestic Electric Circuits; Author: PrepOnGo Class 10 & 12;https://www.youtube.com/watch?v=2ZvWaloQ3nk;License: Standard YouTube License, CC-BY