Tutorials in Introductory Physics
Tutorials in Introductory Physics
1st Edition
ISBN: 9780130970695
Author: Peter S. Shaffer, Lillian C. McDermott
Publisher: Addison Wesley
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 16.1, Problem 2bTH

Consider a book on top of a level table while the book is being pressed straight down by a hand.

Chapter 16.1, Problem 2bTH, Consider a book on top of a level table while the book is being pressed straight down by a hand. i.

i. In the space below, draw a free-body diagram for the book. Label the forces as you did in the tutorial Forces.
ii. How do the forces exerted on the book in this case compare to the forces exerted on the book when the hand is not pushing? List any forces that are the same (i.e., same type of force, same direction, and same magnitude) in both cases. Make a separate list of forces that change (or are not present) when the hand is pressing down on the book.
iii. Is the magnitude of the weight equal to the magnitude of the normal force exerted by the table on the book? How can you tell?

Blurred answer
Students have asked these similar questions
e1 A double incline is setup with two ramps as shown. The left block has a mass m1, and the right block has a mass m2. The left ramp is rough with kinetic friction coefficient uy and an angle 01. The ramp on the right is frictionless with an angle 02. The pulley is massless and frictionless. Assume the system starts accelerating to the right on initial release. a) In the Space below draw a set of free body diagrams (or a single one if taking that method which is fine) to fully describe all forces in this problem. b) Find an equation for the acceleration of the system.
A person pushes a box along the ground. The box has the force diagram shown below. Examine the force diagram to answer the following questions: a. Is the box in equilibrium? If so explain how you can tell. If not, explain why not. b. If the person wants the box to move at constant velocity, should they adjust their pushing on the block? If so, explain how they should change their push. If not, explain why they should change nothing about their push. Normal force (ground) Normal force (person) Friction force (ground) Gravity (Earth)
Suppose that down at the docks, Popeye is pulling the objects shown below with a force of 985 N in the horizontal direction, as shown below. Mass #2 (150.0 kg) is connected to Mass #1 (50.0 kg) by a single cable that is passed over an ideal pulley. The coefficient of kinetic friction between Mass #2 and the ledge is 0.254. He successfully moves the objects after they were at rest.  A. What is the magnitude of the tension in the rope connecting the objects? B. What is the magnitude of the acceleration of the objects?

Chapter 16 Solutions

Tutorials in Introductory Physics

Ch. 16.1 - Let C represent the system consisting of the whole...Ch. 16.1 - A block is at rest on an incline as shown below at...Ch. 16.1 - A block is at rest on an incline as shown below at...Ch. 16.1 - A block is at rest on an incline as shown below at...Ch. 16.1 - Draw a free-body diagram for the book. Label the...Ch. 16.1 - For each force that appears on your free-body...Ch. 16.2 - In the spaces provided draw and label separate...Ch. 16.2 - Rank the magnitudes of all the horizontal forces...Ch. 16.2 - Are any of the forces that you drew for instant 1...Ch. 16.2 - Are any of the forces that you drew for instant 1...Ch. 16.2 - Two creates, A and B, are in an elevator as shown....Ch. 16.2 - As the elevator approach its destination, its...Ch. 16.2 - Prob. 3aTHCh. 16.2 - The vector representing the acceleration systems A...Ch. 16.2 - The vector representing the net force on system A...Ch. 16.2 - The vector representing the frictional force on...Ch. 16.2 - Prob. 4bTHCh. 16.2 - Prob. 4cTHCh. 16.2 - Prob. 4dTHCh. 16.2 - Prob. 5aTHCh. 16.2 - Using only the forces in your free-body diagram...Ch. 16.2 - Using only the forces in your free-body diagrams...Ch. 16.2 - Suppose the friction between the two blocks is...Ch. 16.3 - Draw an arrow to indicate the direction of the...Ch. 16.3 - Draw an arrow to indicate the direction of force...Ch. 16.3 - Draw and label a free-body diagram for the block...Ch. 16.3 - Prob. 2THCh. 16.3 - Describe the motion of each of the systems A, B,...Ch. 16.3 - Draw vectors below to represent the acceleration...Ch. 16.3 - Draw and label separate freebody diagrams for...Ch. 16.3 - Rank the magnitudes of the net forces on systems...Ch. 16.3 - Write expressions for the tension in strings P and...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY