Tutorials in Introductory Physics
Tutorials in Introductory Physics
1st Edition
ISBN: 9780130970695
Author: Peter S. Shaffer, Lillian C. McDermott
Publisher: Addison Wesley
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2.1, Problem 1bT

Describe the remaining forces you have indicated above in a similar fashion.

The diagram you have drawn is called a free-bodydiagram.A free-body diagram should show only the forces exerted on the object or system of interest (in this case, forces exerted on the block). Check your free-body diagram and, if necessary, modify it accordingly.

A proper free-body diagram should not have anything on it except a representation of the object and the (labeled) forces exerted on that object. A free-body diagram never includes (1) forces exerted by the object of interest on other objects or (2) sketches of other objects that exert forces on the object of interest.

Blurred answer
02:20
Students have asked these similar questions
Consider the system in the picture below: a cart of mass M with a static friction coefficient u is connected through a massless string to a hanging mass m. M is a capital letter, m is lower case. Write them as such, or vour equations will be confusing, M We want to find the maximum value of the hanging mass m such that the system is in equilibrium. 1. Free body diagram (FBD): Draw a FBD for each: the Cart and the hanging mass. Clearly show all the forces. 2. Clearly write the equilibrium equations for the cart in the horizontal and vertical direction. 3. Clearly write the equilibrium equation for the hanging mass. 4. Solve the system of the three equations above for the hanging mass m. Show your calculation to get credit. 5. What would happen if mass m exceeds this value? Explain.
Two blocks of masses m1 and m2 are placed in contact with each other on a frictionless horizontal surface. A constant horizontal force F is applied to the block of mass m1, as shown in Figure below (right). Determine the magnitude of the acceleration of the two-block system.
Initially, the system of objects shown in the figure below is held motionless. The pulley and all surfaces are frictionless. Let the force F be zero and assume that m, can move only vertically (with respect to the ground). At the instant after the system of objects is released, find each of the following. (Note: The pulley accelerates along with object M. Use the following as necessary: m₁, m₂, M, and g, where g is the magnitude of the gravitational acceleration. Do not substitute numerical values; use variables only. Take the rightward and upward directions to be positive. Indicate the direction with the sign of your answer.) (a) the tension 7 in the string T= M (b) the acceleration of m₂ am₂= (c) the acceleration of M ³M™ (d) the acceleration of m amy vertical

Chapter 2 Solutions

Tutorials in Introductory Physics

Ch. 2.1 - A magnet is supported by another magnet as shown...Ch. 2.1 - An iron rod is held up by a magnet as shown. The...Ch. 2.2 - Compare the net force (magnitude and direction) on...Ch. 2.2 - Draw separate free-body diagrams for system A and...Ch. 2.2 - Is the magnitude of the force exerted on system A...Ch. 2.2 - D. Identify all the Newton's third law...Ch. 2.2 - Rank the magnitudes of the horizontal forces that...Ch. 2.2 - Suppose the mass of each brick is 2.5 kg, the...Ch. 2.2 - Describe the motions of systems A and B. How does...Ch. 2.2 - Compare the net force (magnitude and direction) on...Ch. 2.2 - Draw and label separate free-body diagrams for...Ch. 2.2 - Consider the following discussion between two...Ch. 2.2 - Rank the magnitudes of all the horizontal forces...Ch. 2.2 - Compare the magnitude of the netforce on system C...Ch. 2.2 - Draw and label a free-body diagram for system C....Ch. 2.2 - At right is a free-body diagram for a cart. All...Ch. 2.3 - Describe the motions of block A, block B, and the...Ch. 2.3 - On a large sheet of paper, draw a separate...Ch. 2.3 - Identify all the Newton's third law...Ch. 2.3 - Rank, from largest to smallest, the magnitudes of...Ch. 2.3 - Consider the horizontal components of the forces...Ch. 2.3 - If the motion of the blocks is the same as in...Ch. 2.3 - Suppose the mass of the string that connects...Ch. 2.3 - A string exerts a force on each of the two objects...Ch. 2.3 - If you know that the net force on a massless...Ch. 2.3 - Predict the subsequent motions of objects A and B...Ch. 2.3 - Draw separate free-body diagrams for objects A and...Ch. 2.3 - Predict: • what will happen to object C when it is...Ch. 2.3 - Draw and label separate free-body diagrams for...Ch. 2.3 - The weight of a 200 g mass has magnitude...Ch. 2.3 - Consider the following statement about the...

Additional Science Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY