Physics for Scientists and Engineers: Foundations and Connections
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
Question
Book Icon
Chapter 31, Problem 67PQ
To determine

The closed line integrals around the five Ampèrian loops.

Expert Solution & Answer
Check Mark

Answer to Problem 67PQ

The closed line integral around the loop a is 4π×107Tm, around the loop b is 20π×107Tm, around the loop c is 16π×107Tm ,around the loop d is 0Tm and around the loop e is 4π×107Tm.

Explanation of Solution

Write the expression for the closed line integral around the Amperian loop as.

  Bdl=μ0I                                                                                                 (I)

Here, B is the magnetic field, l is the length of the loop, μ0 is the permeability of free space and I is the net current through the Amperian loop.

Write the expression for the net current through the loop a as.

  Ia=I2                                                                                                        (II)

Here, Ia is the current through the loop a and I2 is the current through the wire outside the plane.

Write the expression for the net current through the loop b as.

  Ib=I1+I3                                                                                                  (III)

Here, Ib is the current through the loop b, I1 is the current through the wire inside the plane and I3 is the current through the wire inside the plane.

Write the expression for the net current through the loop c as.

  Ic=I1I2+I3                                                                                            (IV)

Here, Ic is the current through the loop c.

Write the expression for the net current through the loop d as.

  Id=0                                                                                                           (V)

Here, Id is the current through the loop d.

Write the expression for the net current through the loop e as.

  Ie=I1I2                                                                                                   (VI)

Here, Ie is the current through the loop e.

Conclusion:

For loop a,

Substitute 1.0A for I2 in equation (II).

  Ia=1.0A

Substitute 4π×107TmA for μ0 and 1.0A for I in equation (I).

  Bdl=(4π×107TmA)(1.0A)=4π×107Tm

The negative sign is because the net current is directed outward the plane.

For loop b,

Substitute 2.0A for I1 and 3.0A for I3 in equation (III).

  Ib=2.0A+3.0A=5.0A

Substitute 4π×107TmA for μ0 and 5.0A for I in equation (I).

  Bdl=(4π×107TmA)(5.0A)=20π×107Tm

For loop c,

Substitute 2.0A for I1, 1.0A for I2 and 3.0A for I3 in equation (IV).

  Ic=2.0A1.0A+3.0A=4.0A

Substitute 4π×107TmA for μ0 and 4.0A for I in equation (I).

  Bdl=(4π×107TmA)(4.0A)=16π×107Tm

For loop d,

Substitute 4π×107TmA for μ0 and 0A for I in equation (I).

  Bdl=(4π×107TmA)(0A)=0Tm

For loop e,

Substitute 2.0A for I1, 1.0A for I2 and 3.0A for I3 in equation (VI).

  Ie=2.0A1.0A=1.0A

Substitute 4π×107TmA for μ0 and 1.0A for I in equation (I).

  Bdl=(4π×107TmA)(1.0A)=4π×107Tm

Thus, the closed line integral around the loop a is 4π×107Tm, around the loop b is 20π×107Tm, around the loop c is 16π×107Tm ,around the loop d is 0Tm and around the loop e is 4π×107Tm.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A conductive loop on the x-y plane is bounded by p = 2.0 cm, p = 6.0 cm, D = 0° and = 90°. 1.5 A of current flows in the loop, going in the ad direction on the p = 2.0 cm arm. Determine H at the origin Select one: O a. 3.3 az (A/m) O b. 2.2 az (A/m) O C. O d. None of these 1.1 az (A/m)
The figure shows two closed paths wrapped around two conducting loops carrying currents i = 5.0 A and iz = 2.2 A. What is the value of the integral ¢B. ds for (a) path 1 and (b) path 2? (a) Number i Units (b) Number i Units
The figure shows two closed paths wrapped around two conducting loops carrying currents i1=5.3 A and i2=1.7A. What is the value of the integral for (a) path 1 and (b) path 2?

Chapter 31 Solutions

Physics for Scientists and Engineers: Foundations and Connections

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning