Essential University Physics: Volume 2 (3rd Edition)
Essential University Physics: Volume 2 (3rd Edition)
3rd Edition
ISBN: 9780321976420
Author: Richard Wolfson
Publisher: PEARSON
Question
Book Icon
Chapter 37, Problem 39P

(a)

To determine

The energy of the photon emitted in a transition from first rotational excited state to the ground state.

(b)

To determine

The wavelength of the photon emitted in a transition from first rotational excited state to the ground state.

(c)

To determine

The spectral region in which the wavelength lies.

Blurred answer
Students have asked these similar questions
Assume the distance between the protons in the H2 molecule is 0.750 x 10-10 m. (a) Find the energy of the first excited rotational state, with J = 1. (b) Find the wavelength of radiation emitted in the transition from J = 1 to J = 0.
If a sodium chloride (NaCl) molecule could undergo an n S n - 1 vibrational transition with no change in rotational quantum number, a photon with wavelength 20.0 mm would be emitted. The mass of a sodium atom is 3.82 * 10-26 kg, and the mass of a chlorine atom is 5.81 * 10-26 kg. Calculate the force constant k′ for the interatomic force in NaCl.
An H2 molecule is in its vibrational and rotational ground states. It absorbs aphoton of wavelength 2.2112 µm and makes a transition to the ν = 1, J = 1energy level. It then drops to the ν = 0, J = 2 energy level while emitting6/9SIX1011a photon of wavelength 2.4054 µm. Calculate (i) the moment of inertia of theH2 molecule about an axis through its centre of mass and perpendicular tothe H − H bond, (ii) the vibrational frequency of the H2 molecule, and (iii) theequilibrium separation distance for this molecule.

Chapter 37 Solutions

Essential University Physics: Volume 2 (3rd Edition)

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning