University Physics Volume 2
University Physics Volume 2
18th Edition
ISBN: 9781938168161
Author: OpenStax
Publisher: OpenStax
bartleby

Concept explainers

Textbook Question
Book Icon
Chapter 13, Problem 91CP

A metal bar of mass m slides without friction over two rails a distance D apart in the region that has a uniform magnetic held of magnitude B 0 and direction

perpendicular to the rails (see below). The two rails are connected at one end to a resistor whose resistance is much larger than the resistance of the rails and the bar The bar is given an initial speed of vg. It is found to slow down.

How far does the bar go before coming to rest? Assume that the magnetic held of the induced current is negligible compared to B 0

Chapter 13, Problem 91CP, A metal bar of mass m slides without friction over two rails a distance D apart in the region that , example  1Chapter 13, Problem 91CP, A metal bar of mass m slides without friction over two rails a distance D apart in the region that , example  2

Blurred answer
Students have asked these similar questions
A charged particle, after entering a constant magnetic field B, starts moving freely along a circular path in the magnetic field applied perpendicular to the particle's velocity (v). What do you conclude about the particle's kinetic energy (KE)? KE increases under the constant magnetic force Fg. KE decreases when magnetic force (FB) is perpendicular to the motion (v). KE and magnetic force FB are not correlated. KE remains unaltered as v and FB are perpendicular to each other
As a model of the physics of the aurora, consider a proton emitted by the Sun that encounters the magnetic field of the Earth while traveling at 3.3 × 10³ m/s. Figure Z V Vparallel B Vperpendicular 700 < 1 of 1 Part A The proton arrives at an angle of 33" from the direction of B (refer to (Figure 1)). What is the radius of the circular portion of its path if B Express your answer to two significant figures and include appropriate units. LO Value Submit Part B Value Submit Part C Calculate the time required for the proton to complete one circular orbit in the magnetic field. Express your answer to two significant figures and include appropriate units. 6 A Value Submit Request Answer Units 6 A Request Answer ← Units C How far parallel to the magnetic field does the proton travel during the time to complete a circular orbit? This is called the pitch of its helical motion. Express your answer to two significant figures and include appropriate units. BI? C Units Request Answer ? 2.8 x 10-5…
Can children be used to generate electricity? Consider turning a swing into an electric generator by building it out of conducting material such that it forms a conducting loop, as shown in the schematic diagram below. L w The swing rotates around the line 1-4; the swinging motion is described by the time evolution of the angle between the swing and the vertical direction, o) = A sin(cor). For simplicity, we place the swing right on top of the magnetic North Pole, so that the magnetic field, which has magnitude B, points straight upwards. In your answers, enter o as "theta" and m as "omega" (without the quotation marks). You must indicate multiplication with an asterisk (). For example, A sin(ont) is entered as "A*sin(omega*t)". Derive an expression for the magnetic flux through the conducting loop as a function of time. Hence derive an expression for the voltage between points a and bas a function of time. Vas = N

Chapter 13 Solutions

University Physics Volume 2

Ch. 13 - In Faraday’s experiments, what would be the...Ch. 13 - A copper ring and a wooden ring of the same...Ch. 13 - Discuss the factors determining the induced emf in...Ch. 13 - a. Does the induced emf in a circuit depend on the...Ch. 13 - How would changing the radius of loop D shown...Ch. 13 - Can there be an induced emf in a circuit at an...Ch. 13 - Does the induced emf always act to decrease the...Ch. 13 - How would you position a flat loop of wire in a...Ch. 13 - The normal to tt plane of a single-turn conducting...Ch. 13 - The circular conducting loops shown in the...Ch. 13 - The north pole of a mag’iet is moved toward a...Ch. 13 - The accompanying figure shows a conducting ring at...Ch. 13 - Show that and dm/dt have the same units.Ch. 13 - State the direction of the induced current for...Ch. 13 - A bar magnet falls under the influence of gravity...Ch. 13 - Around the geographic North Pole (or magnetic...Ch. 13 - A wire loop moves translationally (no rotation) in...Ch. 13 - Is the work required to accelerate a rod from rest...Ch. 13 - The copper sheet shown below is partially in a...Ch. 13 - A conducting sheet lies in a plane perpendicular...Ch. 13 - Electromagnetic braking can be achieved by...Ch. 13 - A coil is moved through a magnetic field as shown...Ch. 13 - A 50-turn coil has a diameter of 15 cm. The coil...Ch. 13 - Repeat your calculations of the preceding...Ch. 13 - A square loop whose sides are 6.0-cm long is made...Ch. 13 - The magnetic field through a circular loop of...Ch. 13 - The accompanying figure shows a single-turn...Ch. 13 - How would the answers to the preceding problem...Ch. 13 - A long solenoid with n= 10 turns per centimeter...Ch. 13 - A rectangular wire loop with length a and width b...Ch. 13 - The magnetic field perpendicular to a single sire...Ch. 13 - A single-turn circular loop of wire of radius 50...Ch. 13 - When a magnetic field is first turned on, t1 flux...Ch. 13 - The magnetic flux through the loop shown in the...Ch. 13 - Use Lenz’s law to determine tl direction of...Ch. 13 - An automobile with a radio antenna 1.0 m long...Ch. 13 - Prob. 38PCh. 13 - Suppose the magnetic field of the preceding...Ch. 13 - A coil of 1000 turns encloses an area of 25 cm2....Ch. 13 - In the circuit sho in the accompanying figure, the...Ch. 13 - The rod shown in the accompanying figure is moving...Ch. 13 - A 25-cm nod moves at 5.0 m/s in a plane...Ch. 13 - In the accompanying figure, the rails, connecting...Ch. 13 - The rod shown below moves to the right on...Ch. 13 - Shown below is a conducting rod that slides along...Ch. 13 - Calculate the induced electric field in a 50-tuni...Ch. 13 - The magnetic field through a circular loop of...Ch. 13 - The current I through a long solenoid with n trims...Ch. 13 - Calculate the electric field induced both inside...Ch. 13 - Prob. 51PCh. 13 - The magnetic field at all points within the...Ch. 13 - The current in a long solenoid of radius 3 cm is...Ch. 13 - The current in a long solenoid of radius 3 cm and...Ch. 13 - Design a current loop that, when rotated in a...Ch. 13 - A flat, square coil of 20 turns that has sides of...Ch. 13 - A 50-turn rectangular coil with dimensions...Ch. 13 - The square armature coil of an alternating current...Ch. 13 - A flip coil is a relatively simple device used to...Ch. 13 - The flip coil of the preceding problem has a...Ch. 13 - A 120-V, series-wound motor has a field resistance...Ch. 13 - A small series-wound dc motor is operated from a...Ch. 13 - Shown in the following figure is a long, straight...Ch. 13 - A metal bar of mass 500 g slides outward at a...Ch. 13 - A current is induced in a circular loop of radius...Ch. 13 - A metal bar of length 25 cm is placed...Ch. 13 - A coil with 50 turns and area 10cm2 is oriented...Ch. 13 - A 2-turn planer loop of flexible wire is placed...Ch. 13 - The conducting rod shown in the accompanying...Ch. 13 - A circular loop of wire of radius 10 cm is mounted...Ch. 13 - The magnetic field between the poles of a...Ch. 13 - A long solenoid of radius a with n turns per unit...Ch. 13 - A 120-V, series-wound dc motor draws 0.50 A from...Ch. 13 - The armature and field coils of a series-wound...Ch. 13 - A copper wire of Length I is fashioned into a...Ch. 13 - A 0.50-kg copper sheet drops through a uniform...Ch. 13 - A circular copper disk of radius 7.5 on rotates at...Ch. 13 - A short rod of length a moves with its velocity...Ch. 13 - A rectangular circuit containing a resistance R is...Ch. 13 - Two infinite solenoids cross the plane of the...Ch. 13 - An eight-turn coil is tightly wrapped around the...Ch. 13 - Shown below is a long rectangular loop of width w,...Ch. 13 - A square bar of mass m and resistance R is sliding...Ch. 13 - The accompanying figure shows a metal disk of...Ch. 13 - A long solenoid with 10 turns per centimeter is...Ch. 13 - The current in the long, straight wire shown in...Ch. 13 - A 500-turn coil with a 0.250m2 area is spun in...Ch. 13 - A circular loop of wire of radius 10 cm. is...Ch. 13 - A long solenoid of radius a with n turns per unit...Ch. 13 - A rectangular copper loop of mass 100 g and...Ch. 13 - A metal bar of mass m slides without friction over...Ch. 13 - A time-dependent uniform magnetic field of...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning