Applied Fluid Mechanics (7th Edition)
Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 7, Problem 7.48PP

A fire truck utilizes its engine to drive a pump that is 82 percent efficient. The water needs to reach an elevation of 15   m above the spray tip as shown in Fig. 7.41 Note: Only the vertical component of the exit velocity contributes to the height, and the vertical component is zero at the peak. Determine:

a. Required exit velocity from the spray tip to reach the required height

b. Resulting flow rate if the spray tip is 45 mm in diameter

c. Power added to the water by the pump if the water is drawn from an open tank at ground level

d. Power required by the pump from the engine given its inefficiency.

Blurred answer
Students have asked these similar questions
1. As a junior city engineer of a municipality, you are tasked to design the specifications of the pump with 3650 cu.m/day. The water source in the municipality is from an open reservoir and will supply to a pressure tank that will distribute to the municipality. open 4l Pressure reservoir Tank 70 m 15 m Pump Determine the following specifications of the pump and piping system (assume fluid stagnation at the pump). Velocity head at pt.1 to 2 if the diameter of the pipe is a.) 200 mm b.) Suction pressure of the pump in kPa (Pressure at pt. 2). c.) Velocíty head at pt.3 to 4 if the diameter of the pipe is 150 mm d.) Discharge pressure of the pump in kPa (Pressure at pt. 4). Assume atmospheric pressure at the pump. If an air vent is installed at the pipe just right before the pressure tank with diameter of 20 mm, what is the velocity of discharge in m/s? The height of the pressure tank is 12 m, what is the flowrate in cu.m/hr at pt.5 if the diameter of the pipe is 150 mm? e.) f.)
2. A pump draws water from a lake delivered to a height of 50 meters above the lake and encounters 15 meters of headloss. Determine the pump power requirement in Kilo-Watts to deliver a constant supply of 500 Liters per second? The correct answer has a margin of 1 from exact answer. Velocity head is neglected.
In a hydro-electric power plant, the difference in elevation between the surface of headwater and tail water surface is 182 m. When the flow is 2.25 m 3 /s, the friction loss in the penstock is 18 m and the head utilized by the turbine is 140 m. The mechanical friction in the turbine is 74.6 kW, and the leakage loss is 0.085 m 3 /s. Calculate: A. Brake powerB. Mechanical efficiencyC. Overall turbine efficiency

Chapter 7 Solutions

Applied Fluid Mechanics (7th Edition)

Ch. 7 - A submersible deep-well pump delivers 745 gal/h of...Ch. 7 - In a pump test the suction pressure at the pump...Ch. 7 - The pump shown in Fig. 7.19 is delivering...Ch. 7 - The pump in Fig. 7.20 delivers water from the...Ch. 7 - Repeat Problem 7.14, but assume that the level of...Ch. 7 - Figure 7.21 shows a pump delivering 840L/min of...Ch. 7 - Figure 7.22 shows a submersible pump being used to...Ch. 7 - Figure 7.23 shows a small pump in an automatic...Ch. 7 - The water being pumped in the system shown in Fig....Ch. 7 - A manufacturer's rating for a gear pump states...Ch. 7 - The specifications for an automobile fuel pump...Ch. 7 - Figure 7.26 shows the arrangement of a circuit for...Ch. 7 - Calculate the power delivered to the hydraulic...Ch. 7 - Water flows through the turbine shown in Fig....Ch. 7 - Calculate the power delivered by the oil to the...Ch. 7 - What hp must the pump shown in Fig. 7.30 deliver...Ch. 7 - If the pump in Problem 7.26 operates with an...Ch. 7 - The system shown in Fig. 7.31 delivers 600 L/min...Ch. 7 - Kerosene (sg = 0.823 ) flows at 0.060m3/s in the...Ch. 7 - Water at 60 F flows from a large reservoir through...Ch. 7 - Figure 7.34 shows a portion of a fire protection...Ch. 7 - For the conditions of Problem 7.31 and if we...Ch. 7 - In Fig. 7.35 kerosene at 25 F is flowing at 500...Ch. 7 - For the system shown in Fig. 7.35 and analyzed in...Ch. 7 - Compute the power removed from the fluid by the...Ch. 7 - Compute the pressure at point 2 at the pump inlet.Ch. 7 - Compute the pressure at point 3 at the pump...Ch. 7 - Compute the pressure at point 4 at the press...Ch. 7 - Compute the pressure at point 5 at the press...Ch. 7 - Evaluate the suitability of the sizes for the...Ch. 7 - The portable, pressurized fuel can shown in Fig....Ch. 7 - Professor Crocker is building a cabin on a...Ch. 7 - If Professor Crocker's pump, described in Problem...Ch. 7 - The test setup in Fig. 7.39 measures the pressure...Ch. 7 - If the fluid motor in Problem 7.44 has an...Ch. 7 - A village with a need for a simple irrigation...Ch. 7 - As a member of a development team for a new jet...Ch. 7 - A fire truck utilizes its engine to drive a pump...Ch. 7 - A home has a sump pump to handle ground water from...Ch. 7 - In Problem 6.107 an initial calculation was made...Ch. 7 - A creek runs through a certain part of a campus...Ch. 7 - A hot tub is to have 40 outlets that are each 8 mm...Ch. 7 - A large chipper/shredder is to be designed for use...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license